Mechanistic Insights on the Promoted Hydrolysis of Phosphoester Bonds by MoO2Cl2(DMF)2

Lanuza, J.; Sánchez-González, A.; Bandeira, N. A. G.; Lopez, X.*; Gil, A.* Inorg. Chem. 2021, 60(15), 11177.

A phosphoester bond is a crucial structural block in biological systems, whose occurrence is regulated by phosphatases. Molybdenum compounds have been reported to be active in phosphate ester hydrolysis of model phosphates. Specifically, MoO2Cl2(DMF)2 is active in the hydrolysis of para-nitrophenyl phosphate (pNPP), leading to heteropolyoxometalate structures. We use density functional theory (DFT) to clarify the mechanism by which these species promote the hydrolysis of the phosphoester bond. The present calculations give insight into several key aspects of this reaction: (i) the speciation of this complex prior to interaction with the phosphate (DMF release, Mo–Cl hydrolysis, and pH influence on the speciation), (ii) the competition between phosphate addition and the molybdate nucleation process, (iii) and the mechanisms by which some plausible active species promote this hydrolysis in different conditions. We described thoroughly two different pathways depending on the nucleation possibilities of the molybdenum complex: one mononuclear mechanism, which is preferred in conditions in which very low complex concentrations are used, and another dinuclear mechanism, which is preferred at higher concentrations.

Impact factor: