Characterisation of Polycaprolactone scaffolds made by melt electrospinning writing for pelvic organ prolapse correction - a pilot study

R. Rynkevic, M.E.T Silva, P. Martins, T. Mascarenhas, J.L Alves, and A.A Fernandes. Characterisation of polycaprolactone scaffolds made by melt electrospinning writing for pelvic organ prolapse correction - a pilot study. Materials Today Communications, page 104101, jul 2022a. doi: 10.1016/j.mtcomm.2022.104101

Additive manufacturing and 3D printing technologies enable personalised treatments using custom-made prosthetics, implants and other medical devices. This research aimed to characterise novel biodegradable polycaprolactone (PCL) implants for pelvic organ prolapse repair, produced using melt electrospinning technology.

PCL mesh filaments were printed in 5 configurations: 240 µm, 160 µm, three layers of 80 µm, two layers of 80 µm and one layer of 80 µm. Material sterilisation, degradation, mechanical behaviour, and geometric variation due to applied loads were studied. Polypropylene (PP) Restorelle mesh was used as a reference in this study and vaginal tissue as a baseline.

Sterilisation by UV irradiation+ EtOH 70% did not affect the specimens. A significant weight loss was observed in 80 µm deposited fibers at 90 - and 180 - days of degradation, losing 10% of weight in neutral solution to 27% in acidic. All printed PCL deposited fibers had functional loss at 180 - day degradation in acidic solution (pH 4.2) (p < 0.05). PCL printed meshes were classified as ultra-lightweight, except lightweight 240 µm filament mesh. PCL meshes closely match the biomechanical properties of vaginal tissues, particularly in the comfort zone, unlike the Restorelle implant. The 3D printed mesh pores appeared to be stable compared to those of Restorelle meshes that had been used clinically until the FDA pulled its approval.

Based on the pilot study results, improved implant designs will be studied, and in vitro experiments on the cell adhesion and growth response will be conducted.

Impact factor: